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SYMMETRY TECHNIQUES FOR THE NUMERICAL
SOLUTION OF THE 2D EULER EQUATIONS AT

IMPERMEABLE BOUNDARIES
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SUMMARY

The implementation of boundary conditions at rigid, fixed wall boundaries in inviscid Euler solutions by
upwind, finite volume methods is considered. Some current methods are reviewed. Two new boundary
condition procedures, denoted as the symmetry technique and the cur6ature-corrected symmetry technique
are then presented. Their behaviour in relation to the problem of the subsonic flow about blunt and
slender elliptic bodies is analysed. The subsonic flow inside the Stanitz elbow is then computed. The
symmetry technique is proven to be as accurate as one of the current methods, second-order pressure
extrapolation technique. Finally, for arbitrary curved geometries, dramatic advantages of the cur6ature-
corrected symmetry technique over the other methods are shown. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The present paper deals with the implementation of boundary conditions at solid walls in the
numerical simulation of compressible inviscid flows governed by the Euler equations. At solid
boundaries, in the absence of suction or transpiration, it is generally recognised that the
normal velocity component must be set to zero to satisfy the conservation of mass. The
pioneering work of Moretti [1] focused on this issue in the early 1960’s and described the
inadequacies of reflection techniques. As a natural consequence, Moretti and Abbett [2]
introduced a characteristic boundary condition, which significantly improved the accuracy of
this early computations. Moretti [3] appropriately persevered in this direction with the
development of the l-scheme, widely employed by the present author (see, e.g. Reference [4]).
Such a type of characteristic boundary conditions has been applied to non-conservative as well
as conservative schemes (see, e.g. References [5,6]).

For finite volume discretisations, only the pressure is required at a solid boundary. Such a
pressure can be computed by using the steady state normal momentum equation suggested by
Rizzi [7], the simpler extrapolation methods suggested by Walters and Thomas [8], or the
characteristic boundary condition suggested by Dadone and Grossman [9]. Such techniques
will be reviewed in the next section, with reference to a cell centred scheme.

* Correspondence to: Istituto di Macchine ed Energetica, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy. Tel:
+39 80 5460465; Fax: +39 80 5460411; E-mail: dadone@imedado.poliba.it

CCC 0271–2091/98/171093–16$17.50
© 1998 John Wiley & Sons, Ltd.

Recei6ed March 1997
Re6ised No6ember 1997



A. DADONE1094

Next we will discuss the symmetry technique and the cur6ature-corrected symmetry technique.
The symmetry technique, strictly valid only for planar walls, is a characteristic type methodol-
ogy, which was introduced in Reference [10]. It is a physically consistent technique to enforce
the impermeability condition at planar walls and mimics the reflection boundary conditions for
finite difference methods. The cur6ature-corrected symmetry technique extends the symmetry
technique to curved walls by taking into account the curvature effects, which may play a
meaningful role in determining the computed solution. This method was originally introduced
in References [11] and [12], and is applicable to arbitrary curved geometries.

The behaviour of the classical impermeability conditions will be compared with the results
obtained by means of the symmetry techniques for the problem of the subsonic flow about
blunt and slender elliptic bodies. Dramatic advantages of the cur6ature-corrected symmetry
technique over the other methods will be shown. Finally, the subsonic flow inside the Stanitz
elbow will be computed and the cur6ature-corrected symmetry technique will be proven to give
more accurate results in an internal flow computation too. Moreover, the advantages of the
symmetry technique will also be outlined.

2. CLASSICAL IMPERMEABILITY CONDITIONS

Consider the Euler equations in a Cartesian co-ordinate system and a semi-discrete finite
volume representation of such equations [8]. Our attention is focused on a cell of the
computational volume. The flux vector across a cell edge can be expressed as

F= [r6̃, kxp+ru6̃, kyp+r66̃, rho6̃ ]T, (1)

where u, 6, w are the three components of the velocity vector with respect to the Cartesian
co-ordinate system, kx, ky are the direction cosines and p, r, ho represent the pressure, the
density and the total enthalpy per unit mass, respectively. Finally, 6̃ is the velocity component
normal to the considered cell edge:

6̃=kxu+ky6. (2)

If the considered cell edge is located on an impermeable boundary so that 6̃=0, Equation
(1) shows that the only quantity required to compute the flux vector at such a cell edge is the
pressure at the wall.

The surface pressure can be extrapolated from the interior of the flow field. One approach
is to extrapolate such a pressure so that the normal momentum equation is satisfied [7]. This
condition requires that the derivative of the pressure at the wall taken along its normal (n) is
given by�(p

(n
�

w

= −
r

R
ũ2, (3)

where R is the radius of curvature of the wall, subscript w refers to the wall, and ũ is the
velocity component tangential to the body:

ũ=kyu−kx6. (4)

For orthogonal grids, Equation (3) has been discretised in Reference [7] as (normal momentum
pressure extrapolation)
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pw=p1−r1

ũ1
2

R
Dn1, (5)

where the subscript 1 refers to the cell centre nearest to the body and Dn1 indicates its distance
from the body. More often, the value of the surface pressure is taken as the value at the nearest
cell centre [8] (first-order pressure extrapolation):

pw=p1. (6)

The surface pressure can be obtained more accurately by means of a linear extrapolation from
the two nearest cell centres [8] (second-order pressure extrapolation):

pw=1.5p1−0.5p2, (7)

where subscripts 1 and 2 refer to such cell centres.
These three extrapolation techniques can result with a possible inconsistency when comput-

ing supersonic flow problems with embedded oblique shocks, since such a shock may lie
between the surface and the nearest cell centres, even in the limit of vanishing cell size.
Consequently, an alternative characteristic boundary condition has been suggested in Refer-
ence [9], which leads to the relation

pw=p19r1a16̃1, (8)

where a is the speed of sound and 6̃ is the velocity component normal to the wall. Moreover,
the plus and minus signs apply to lower and upper walls, respectively.

3. CURVATURE CORRECTED SYMMETRY TECHNIQUE

It is well known that numerical schemes lose accuracy where some change is inserted.
Variations in the numerical scheme can generally be found at the boundaries, because of the
lack of some numerical information. Obviously, such variations also take place at solid walls.
In order to restore the original numerical accuracy, the wall boundary discontinuity must be
eliminated, which may be accomplished by inserting two extra rows of cells outside the
computational flow field. The fluid dynamic variables at the corresponding cell centres must
warrant the impermeability condition at the wall. Such a condition is not sufficient to
completely define the values of such variables, so that a model of the flow field in the wall
vicinity is needed. The most appropriate model is represented by a vortex flow of constant
entropy and total enthalpy, which satisfies the normal momentum equation (Equation (3)).
The proposed cur6ature-corrected symmetry technique is based on the previous analysis: two
extra rows of cells, an appropriate vortex flow, and the enforcement of the impermeability
condition at the wall.

As shown in Figure 1, two image cells are located below the surface of the wall in a
symmetric position with respect to the internal cells. At the corresponding image cell centres,
the fluid dynamic conditions are evaluated as follows. In the vicinity of the wall, the velocity
component normal to the wall is generally small enough to be considered equal to zero.
Accordingly, the pressure values at the two image points (refer to Figure 1) can be determined
from an integration of Equation (3), which can be approximated in the same spirit of Equation
(5):

p− i=pi−2r1

ũ1
2

R
Dni, (9)
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where the subscript i is equal to 1 or 2, and Dni indicates the distance between the cell centre
(i) and the wall.

Two other flow conditions may be evaluated by locally modelling the inviscid flow as a
vortex flow of constant entropy and total enthalpy, i.e. by assuming symmetric values of such
quantities. Such a condition leads to

r− i=ri

�p− i

pi

�1/g

, ũ− i
2 = ũ i

2+
2g

g−1
�pi

ri

−
p− i

r− i

�
+ 6̃ i

2− 6̃− i
2 , (10)

where the subscript i is equal to 1 or 2 and g is the constant ratio of specific heats.
The remaining condition stems from the impermeability condition. In the computed results,

the finite volume flux-difference splitting method which uses the approximate Riemann solver
due to Roe [13] will be used. As a consequence, the impermeability condition is enforced by
assigning an antisymmetric value to 6̃−1 and by selecting 6̃−2 in such a way that the Roe
averaged value of the normal velocity component 6̃ is zero at the surface. In the absence of
limiters, using linear extrapolations for the left and right states, these conditions imply

6̃−1= − 6̃1, 6̃−2=36̃−1+2[6̃1+ (6̃1− 6̃2)/2]
' r1+ (r1−r2)/2

r−1+ (r−1−r−2)/2
. (11)

The present methodology presents several advantages. Firstly, the surface flux evaluation
procedure is consistent with the flux evaluation technique employed at the internal cell edges.
Moreover, the present procedure allows second-order spatial accuracy for both the surface cell
edge and the first cell edge off the surface. As a consequence, no change in the numerical
scheme is required at the wall, so that a limited entropy generation can be expected. Finally,
limiters can be implemented, as with any internal cell edge flux evaluation.

Equations (9)–(11) completely define the flow conditions at the image points (−1) and
(−2), while no fluid dynamic variable is defined at the wall surface. On the contrary, the
classical impermeability conditions, Equations (5)–(8), define the wall pressure, which is
required for data presentation purposes. The cur6ature-corrected symmetry technique uses the
Roe approximate Riemann solver as a mean to evaluate the wall fluxes, from which a pressure
value could be computed. Such a value does not accurately represent the surface pressure,
because of the method used in the application of the Riemann solution for the evaluation of
the surface flux. This flux is computed from discontinuous left and right states of the flow
variables at a cell edge. The value of the surface flux from the Riemann solver, although
appropriate for the time integration of the solution for the cell-averaged conserved variables,
does not accurately represent the surface pressure. As a consequence, the cur6ature-corrected
symmetry technique has a second part, which involves the computation of the physical wall

Figure 1. Image cells for symmetry techniques.
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pressure, useful only for data presentation purposes: when the converged solution has been
obtained, the surface pressure is extrapolated from interior cell centre values consistently with
the normal momentum equation evaluated at the surface, Equation (3):

pw=
�

p1Dn2
2−p2Dn1

2−rw

ũw
2

R
Dn1Dn2(Dn2−Dn1)

n
/(Dn2

2−Dn1
2). (12)

When applying Equation (12), the values of density and velocity at the wall have been taken
as equal to the values of the corresponding variables at the nearest cell centre (1). This avoids
extrapolations across discontinuities and has a minimal effect on the results. This second part
of the cur6ature-corrected symmetry technique, as already stated, is only useful for data
presentation purposes and does not influence the computation itself, which uses only the first
part of the outlined technique.

4. SYMMETRY TECHNIQUE

When planar walls are considered or when curved walls are locally approximated by flat plates,
R��, so that a simplified technique may be devised. Such a simplified technique has been
named symmetry technique. It is strictly valid only for steady flows over planar walls, although
it may be used as an approximate technique for curved walls. Owing to the condition R��,
Equations (9)–(11) may be simplified, so that the pressure, the density and the velocity
components at the two image cells located below the surface (Figure 1) are given by

p−1= +p1,
r−1= +r1,
ũ−1= + ũ1,
6̃−1= − 6̃1,

p−2= +p2,
r−2= +r2,
ũ−2= + ũ2,
6̃−2= − 6̃2.

(13)

Similarly to the cur6ature-corrected symmetry technique, the second part of this boundary
condition technique involves the computation of the physical wall pressure by means of
Equation (12). Again, it should be noted that this surface pressure is only used for presentation
purposes and does not influence the computation itself, which uses only the first part of the
outlined technique.

Equation (13) outlines that the pressure, the density and the velocity vector at the two image
cell centres are taken symmetrically from their counterparts in the interior of the computa-
tional domain. Such a situation has determined the definition of the methodology as the
symmetry technique. Moreover, such a symmetry of Equation (13) warrants that the following
physical property is preserved. If we consider a full plane problem which presents a symmetric
solution with respect to a symmetry axis, the computation can be extended only to the half
plane delimited by the symmetry axis. At such a straight line, the normal velocity component
must be zero, because of the symmetry. As a consequence, in the half plane problem the
symmetry axis is represented by a planar wall. Obviously, the full and half plane problems
should give exactly the same results. Such a physical condition is satisfied if the symmetry
technique is used, while it is only approximately satisfied if any one of the classical imperme-
ability conditions is used.

In the absence of any flux limitation, the approximate Riemann solver due to Roe [13] gives
the following relation for the wall pressure used to compute the surface flux:
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pw=pr+rr6̃r[6̃r−aw], (14)

where subscript r refers to the right state, obtained by means of an appropriate MUSCL
extrapolation. Moreover, aw

2 = (g−1)(Hr− ũ r
2/2), where H is the total enthalpy. Comparison

of Equation (14) with (8) indicates that this relationship can be considered as a characteristic
boundary condition within the framework of Roe’s method. Accordingly, the symmetry
technique must be considered as a characteristic boundary condition.

Finally it must be remarked that the symmetry technique coincides with the boundary
condition at planar walls used in connection with the l-scheme, as already proven in Reference
[10].

5. RESULTS

5.1. Elliptic body

Two-dimensional subsonic flows about a blunt and a slender elliptic body are analysed here
to test the accuracy of the symmetry techniques in comparison with the other reviewed
procedures. Three different O-grids made by 32×8, 64×16, and 128×32 cells have been
employed, the higher number of cells being located in the circumferential direction.

First, a blunt elliptic body, with an axis ratio equal to 0.75, has been considered. The
circular farfield boundary was located at 17.5 times the major axis dimension. The undisturbed
Mach number, equal to 0.30, causes a maximum Mach number close to 0.82 to take place on
the ellipse surface. Computations have been performed using the second-order (P-II) and the
normal momentum (NME) pressure extrapolation, along with the symmetry (ST) and the
curvature-corrected symmetry (CCST) techniques.

Many different parameters have been considered in order to compare the effectiveness of the
different boundary condition methods. The leading edge pressure, ple, divided by the total
pressure, p°, is plotted in Figure 2(a) versus the inverse of the total number of cells, N. From
these results, it appears that all the methods are consistent and approach the exact value, equal
to 1, in the limit of a vanishing cell size. The CCST results, however, appear to be significantly
more accurate than those computed with the other approaches. Other results confirming the
remarkable behaviour of the CCST are plotted in Figure 2(b–d): the trailing edge pressure, pte,
is reported in Figure 2(b); the L2 norm of the total pressure error on the surface of the body
is represented in Figure 2(c); the drag coefficient, Cd, is shown in Figure 2(d). In particular,
Figure 2(b) confirms the grid convergence of the CCST but also shows the improved accuracy
of this method even at the fine grid level: the ST, P-II and NME have about a 1% error in
trailing edge pressure, while in stark contrast the CCST shows a remarkable 0.1% error.

Next, the Mach number and the entropy contours are presented in Figures 3 and 4. The
computations were performed by employing the finest 128×32 grid. The Mach number
contours are spaced at DM=0.1 and the entropy contours are spaced at Ds=0.001. A
remarkable Mach number contour symmetry can be observed for the CCST, while a significant
asymmetry is caused by the P-II. Moreover, the P-II generates high spurious entropy levels
(smax=0.0067), while the CCST causes minute values of spurious entropy (smax=0.0009). The
other technique results are not reported for the sake of conciseness and do not alter the
previous conclusions: the ST gives results slightly better than the P-II; the NME gives results
very close to the P-II, concerning the Mach contours, and the worst results in relation to the
entropy contours. In particular, smax=0.0059 for the ST and smax=0.0114 for the NME.
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A slender elliptic body, with an axis ratio equal to 0.125, was then considered. The circular
farfield boundary is located at 10.5 times the major axis dimension. The undisturbed Mach
number, equal to 0.75, causes a maximum Mach number close to 0.94 to take place on the
ellipse surface. Computations were performed using the previous four techniques. Only the
leading edge pressure (Figure 5(a)) and the trailing edge pressure (Figure 5(b)) are presented.
A quick glance to such figures allows confirmation of the conclusions drawn from Figure
2(a–d). Moreover, Figures 6 and 7 present the Mach number contours obtained by means of
the P-II and the CCST, respectively. The asymmetry of the P-II results is less evident in the
present case, although the distortion in the wake region indicates the presence of spurious

Figure 2. (a) Leading edge pressure—blunt elliptic body; (b) trailing edge pressure—blunt elliptic body; (c) L2-norm
surface total pressure error—blunt elliptic body; (d) drag coefficient—blunt elliptic body.
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Figure 2 (Continued)

entropy levels. Indeed the entropy contours, not presented here, confirm such a spurious
entropy generation: smax=0.0065 for the P-II, while it reduces to 0.0015 for the CCST. Also
in the present test case, the NME causes the worst entropy generation: smax=0.0174.

All of the previous computations were also performed by employing the first-order pressure
extrapolation technique. The corresponding results are not here reported for the sake of figure
clarity. Nevertheless, it is worth mentioning that all of them show a very poor accuracy.

5.2. Stanitz elbow

A more practical flow case is considered here, namely the subsonic flow inside the Stanitz
elbow [14]. The duct geometry is two-dimensional, although appropriate inlet conditions can
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Figure 3. (a) Mach number contours—blunt elliptic body: second-order pressure extrapolation P-II; (b) entropy
contours—blunt elliptic body: second-order pressure extrapolation P-II.

produce a three-dimensional flow in the elbow. In the present computation a two-dimensional
flow condition was considered, corresponding to a nominal main stream exit Mach number
equal to 0.8. Computations were performed using the second-order (P-II) and the normal
momentum (NME) pressure extrapolation, along with the symmetry techniques (ST and
CCST). Three different grids made by 16×8, 32×16, and 64×32 cells have been employed,
the higher number of cells being located in the streamwise direction. The duct geometry and
the intermediate employed mesh are shown in Figure 8.

The pressure distributions on the pressure and suction surfaces are plotted in Figure 9(a).
The abscissa is the curvilinear co-ordinate, j, adimensionalized with respect to the curvilinear

Figure 4. (a) Mach number contours—blunt elliptic body: curvature corrected symmetry technique CCST; (b) entropy
contours—blunt elliptic body: curvature corrected symmetry technique CCST.
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Figure 5. (a) Leading edge pressure—slender elliptic body; (b) trailing edge pressure—slender elliptic body.

distance, jl, between the inlet and the outlet sections. The results of Figure 9(a) refer to the
finest employed grid and were computed using the four different techniques. A quick glance to
such a figure shows that the four techniques predict practically coincident results, with minor
differences on the suction surface at intermediate j values. The pressure distributions on the
suction surface at j/jl=0.4}0.5 are plotted in Figure 9(b,c). The results in Figure 9(b) were
computed using the intermediate grid (32×16), while Figure 9(c) refers to the coarsest grid
(16×8). The continuous line in these figures represents the mesh converged solution. Figure 9
again proves that all the methods are consistent and tend to approach the same distribution in
the limit of a vanishing cell size. However, the CCST results appear to be significantly more
accurate than the other approaches. Indeed, the intermediate mesh results practically coincide

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1093–1108 (1998)
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Figure 6. Mach number contours—slender elliptic body: second-order pressure extrapolation P-II.

with the mesh converged ones, and also the coarsest mesh results show a reasonable
agreement. Moreover, the ST and P-II results are practically coincident, and the NME results
rank second in terms of accuracy.

The Mach number distributions are plotted in Figure 10. Figure 10(a) refers to the finest
grid, Figure 10(b) to the intermediate one and Figure 10(c) to the coarsest grid. All the
previous conclusions can again be drawn: all the results are practically coincident at the finest
mesh level; all the methods are consistent; the CCST results are undoubtedly more accurate;
the CCST intermediate mesh results practically coincide with the mesh converged ones; the ST
and P-II results are practically coincident; the NME results rank second in terms of accuracy.

The first-order pressure extrapolation technique was also employed for the present computa-
tions. The corresponding results, not reported here, again showed the poorest accuracy.

Figure 7. Mach number contours—slender elliptic body: curvature corrected symmetry technique CCST.
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Figure 8. Duct geometry and intermediate mesh—Stanitz elbow.

As far as the efficiency is concerned, all the employed methodologies require approximately
the same number of iterations to obtain a converged solution. In particular, the NME and
CCST techniques have shown to be slightly more efficient, although the differences are
relatively small.

Figure 9. (a) Pressure distribution on suction and pressure surfaces—Stanitz elbow: 64×32 cells; (b) pressure
distribution on suction surface—Stanitz elbow: 32×16 cells; (c) pressure distribution on suction surface—Stanitz

elbow: 16×8 cells.
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Figure 9 (Continued)

6. CONCLUSIONS

Classical techniques used to enforce the impermeability condition at rigid, fixed wall
boundaries have been outlined. The symmetry technique, quite appropriate to enforce the
impermeability condition at a plane wall, has been presented, together with the cur6ature-cor-
rected symmetry technique, which is more appropriate for a curved wall.

The cur6ature-corrected symmetry technique was used to compute two simple two-dimen-
sional subsonic flow test cases, i.e. the flow about a blunt and a slender elliptic body. The
computed results were compared with those obtained by means of other techniques. The
suggested technique gives more accurate results: the computational errors are reduced by one
order of magnitude, the isoMach patterns are quite symmetric between the front and rear
portion, the isoentropy patterns show entropy levels quite close to zero.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1093–1108 (1998)
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Finally, the subsonic flow in a contracting curved duct was computed and again, the results
established the superior accuracy of the cur6ature-corrected symmetry technique. Indeed,
accurate results have been computed using much coarser grids.

All of the computed results have also proven that the symmetry technique and the
second-order pressure extrapolation technique are characterised by almost the same accuracy,
and that the normal momentum pressure extrapolation causes an excessive entropy generation
at the walls, when the computed flow case involves a stagnation point, while it gives a better
accuracy for flows in curved ducts. Finally, the first-order pressure extrapolation technique
gives the poorest accuracy. The poor quality of these results must be remarked because many

Figure 10. (a) Mach number distribution on suction and pressure surfaces—Stanitz elbow: 64×32 cells; (b) Mach
number distribution on suction surface—Stanitz elbow: 32×16 cells; (c) Mach number distribution on suction

surface—Stanitz elbow: 16×8 cells.
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Figure 10 (Continued)

cell-centred, upwind finite volume codes use such a technique for robustness, because it does
not require any extrapolation, which may be troublesome in presence of oblique shocks located
close to the wall. It is the author’s opinion that the symmetry technique and the cur6ature-cor-
rected symmetry technique are as robust as the first-order pressure extrapolation technique and
much more robust than the second-order pressure extrapolation technique. At least, this is
certainly true for the symmetry technique, so that its use should be recommended if the
cur6ature-corrected symmetry technique is not considered robust enough.

Moreover, it must be remarked that it is very simple to implement the suggested techniques
in existing codes, they require almost no extra computational effort, and the code efficiency is
not impaired.

Recent studies have addressed the extension of the cur6ature-corrected symmetry techniques
to three-dimensional flows. Preliminary results indicate that it may be easily extended by
applying the two-dimensional methodology in the osculating plane. Finally, it must be
remarked that all the considered techniques are apt to compute steady flows.
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